nebula
Release 0.0.1

Aug 08, 2023

Contents:

1 Managers 3
L1 Using Managers o v v i i e e e e e e e e e e e e e e e e e e e 3
1.2 BootFlow e e e e e e 3
2 Command-Line S
2.1 Top-Level o . o e e e e e e e 5
2.2 MANAGER . . . e 7
23 UART e 8
24 NETWORK 10
2.5 DOWNLOADER o 11
26 PDU . . e 12
27 JTAG . . o e e e 12
2.8 INFO 13
2.9 DRIVER 13
3 pytest 15
4 Configuration 17
4.1 Generationt e e e e e e e e e e e e e e e e e e e 18
5 Built-In Tests 19
5.1 Driver Tests o o v o e e e e e e e e e 19
5.2 Operating System Tests e 19
6 Examples 21
6.1 Kernel Coverage Testing ot i i v it e e e e e e e e e e 21
7 Indices and tables 23

nebula, Release 0.0.1

Nebula is a utility library design to aid development with embedded platforms through infrastructure management
and orchestration. Targeted at using systems from the desktop as a standard developer or through a CI system. The
majority of the supported functionality is built in pure python, or relies on existing packages built in pure python,
making cross-platform support possible.

There are two main interfaces for nebula:

* Module: For python projects or projects using python for testing or tasking, the module interface is designed
to complement existing infrastructure to enable boot file (uboot, bitstream, kernel) deployment automation to
development systems.

* CLI: Built on top of invoke, the command-line interface simplifies common tasks typically done by a developer
to build and deploy boot files to a development platform

Contents: 1

nebula, Release 0.0.1

2 Contents:

CHAPTER 1

Managers

The manager class is designed to leverage many of the underlying classes (UART, Network, PDF, ...) together to
effectively manage the state of development boards. Since in some cases not a single interface can be used to handle
all failure modes, the manager class selectively uses the core classes to bring boards up and down, no matter their
existing state or cause of failure.

1.1 Using Managers

1.2 Boot Flow

Below is the logic used to effectively load a boot files (bitstream, kernel, device tree) and test if the board is ready for
driver specific or other tests that require a booted board.

nebula, Release 0.0.1

POWERUP BOARD

olP Found IP Not accessible

Network Update BOOT Power
Broken From Linux (NET) Cycle (PDU)
Enter UBOOT
Menu (UART)
Failed \Passed
UBOOT Load Bootfiles
Broken (UART/TFTP)
Failed
Update IP
Passed (UART)
4 Chapter 1. Managers
¢ Passed

CHAPTER 2

Command-Line

Invoke style tasks for Nebula’s CLI.

2.1 Top-Level

Subcommands :
gen—-config
show-log
update-config
build.repo
coverage.kernel
dl.bootfiles
dl.sdcard
driver.check-iio-devices
info.supported-boards
jtag.reboot
manager.update-boot-files
manager.update-boot-files-Jjtag
manager.recovery-device-manager

net.check-dmesg

net.restart-board
net .update-boot-files

Generate YAML configuration interactively
Show log for all following tasks

Update or read field of existing yaml
config file

Clone and build git project

Collect DUT gcov kernel logs and generate
html report (Requires lcov to be
installed locally)

Download bootfiles for a specific
development system

Download, verify, and decompress SD card
image

Verify all IIO drivers appear on system
as expected.

Print out list of supported design names
Reboot board using JTAG

Update boot files through u-boot menu
(Assuming board is running)

Update boot files through JTAG

(Assuming board is running)

Recover device through many methods
(Assuming board is running)

Download and parse remote board's dmesg
log

Reboot development system over IP

Update boot files on SD Card over SSH

(continues on next page)

nebula, Release 0.0.1

(continued from previous page)

pdu.power-cycle Reboot board with PDU

uart.get-carriername Get Carrier (FPGA) name of DUT from UART
connection

uart.get-ip Get IP of DUT from UART connection

uart.get-mezzanine Get Mezzanine (FMC) name of DUT from UART
connection

uart.restart-board Reboot DUT from UART connection assuming
Linux 1is accessible

uart.set-dhcp Set board to use DHCP for networking from

UART connection
uart.set-local-nic-ip-from-usbdev Set IP of virtual NIC created from DUT
based on found MAC

uart.set-static-ip Set Static IP address of board of DUT
from UART connection
uart.update-boot-files Update boot files through u-boot menu

(Assuming board is running)

Usage: nebula [--core-opts] gen-config [other tasks here ...]

Docstring:
Generate YAML configuration interactively

Options:
none

Usage: nebula [--core-opts] show-log [--options] [other tasks here ...]

Docstring:
Show log for all following tasks

Options:
-1 STRING, —--level=STRING Set log level. Default is DEBUG

Usage: nebula [--core-opts] update-config [--options] [other tasks here ...]

Docstring:
Update or read field of existing yaml config file

Options:
-b STRING, --board-name=STRING
—-f STRING, --field=STRING Field of section of yaml to update
-s STRING, --section=STRING Section of yaml to update
-v STRING, --value=STRING New field value. If none if given field is
only printed
-y STRING, --yamlfilename=STRING Path to yaml config file. Default:

OS_SPECIFIC

6 Chapter 2. Command-Line

nebula, Release 0.0.1

2.2 MANAGER

Usage: nebula [--core-opts] manager.update-boot-files [--options] [other tasks here
¢—>.J
Docstring:

Update boot files through u-boot menu (Assuming board is running)

Options:

-b STRING, --bootbinpath=STRING Path to BOOT.BIN.

—-d STRING, —--devtreepath=STRING Path to devicetree.

—-f STRING, --folder=STRING Resource folder containing
BOOT.BIN, kernel, device tree, and
system_top.bit. Overrides other
setting

-0 STRING, —--board—-name=STRING

-s STRING, --system-top-bit-path=STRING

-u STRING, --uimagepath=STRING Path to kernel image.

-y STRING, --yamlfilename=STRING Path to yaml config file. Default:
/etc/default/nebula

Usage: nebula [--core-opts] manager.update-boot-files-jtag [--options] [other tasks_
—~here ...]
Docstring:

Update boot files through JTAG (Assuming board is running)

Options:

-b STRING, --bootbinpath=STRING Path to BOOT.BIN.

—-d STRING, —--devtreepath=STRING Path to devicetree.

—-f STRING, --folder=STRING Resource folder containing BOOT.BIN,
—~kernel, device tree, and system_top.bit. Overrides other setting

-0 STRING, —--board-name=STRING Name of DUT design (Ex: zyng-zc706-
—adv751l1l-fmcdag?2) . Require for multi-device config files

-s STRING, --system-top-bit-path=STRING Path to system_top.bit

-u STRING, --uimagepath=STRING Path to kernel image.

-y STRING, --yamlfilename=STRING Path to yaml config file. Default: /etc/
—default/nebula
Usage: nebula [--core-opts] manager.recovery-device-manager [--options] [other tasks,,
—~here ...]
Docstring:

Recover device through many methods (Assuming board is running)

Options:

-b STRING, --bootbinpath=STRING Path to BOOT.BIN.

-C ——sdcard No arguments required. If set, reference,
—~files is obtained from SD card.

-d STRING, --devtreepath=STRING Path to devicetree.

—-f STRING, —--folder=STRING Resource folder containing BOOT.BIN,
—~kernel, device tree, and system_top.bit. Overrides other setting

-0 STRING, —--board—-name=STRING

-s STRING, --system-top-bit-path=STRING Path to system_top.bit

-u STRING, --uimagepath=STRING Path to kernel image.

(continues on next page)

2.2. MANAGER 7

nebula, Release 0.0.1

(continued from previous page)

-y STRING, --yamlfilename=STRING Path to yaml config file. Default: /etc/
—default/nebula

2.3 UART

Usage: nebula [--core-opts] uart.get-carriername [--options] [other tasks here ...]

Docstring:
Get Carrier (FPGA) name of DUT from UART connection

Options:

—-a STRING, --address=STRING UART device address (/dev/ttyACMO). If a
yaml config exist, it will override, if no
yvaml file exists and no address provided
auto is used

-b STRING, —--board-name=STRING

-y STRING, --yamlfilename=STRING Path to yaml config file. Default:

/etc/default/nebula
Usage: nebula [--core-opts] uart.get-ip [—-—-options] [other tasks here ...]
Docstring:
Get IP of DUT from UART connection
Options:
-a STRING, --address=STRING UART device address (/dev/ttyACMO). If a

yvaml config exist is will override, if no
vaml file exists and no address provided
auto is used

-b STRING, —--board—-name=STRING

-y STRING, --yamlfilename=STRING Path to yaml config file. Default:
/etc/default/nebula

Usage: nebula [--core-opts] uart.get-mezzanine [--options] [other tasks here ...]

Docstring:
Get Mezzanine (FMC) name of DUT from UART connection

Options:

—-a STRING, --address=STRING UART device address (/dev/ttyACMO). If a
yaml config exist, it will override, if no
yvaml file exists and no address provided
auto is used

-b STRING, —--board-name=STRING

-y STRING, --yamlfilename=STRING Path to yaml config file. Default:
/etc/default/nebula

Usage: nebula [--core-opts] uart.restart-board [--options] [other tasks here ...]

Docstring:

(continues on next page)

8 Chapter 2. Command-Line

nebula, Release 0.0.1

(continued from previous page)

Reboot DUT from UART connection assuming Linux is accessible

Options:

—-a STRING, --address=STRING UART device address (/dev/ttyACMO). If a
yaml config exist is will override, if no
yvaml file exists and no address provided
auto is used

-b STRING, —--board-name=STRING

-y STRING, --yamlfilename=STRING Path to yaml config file. Default:
/etc/default/nebula

Usage: nebula [--core-opts] uart.set-dhcp [--options] [other tasks here ...]

Docstring:
Set board to use DHCP for networking from UART connection

Options:

—a STRING, —--address=STRING UART device address (/dev/ttyACMO). If a
yvaml config exist is will override, if no
vaml file exists and no address provided
auto is used

-b STRING, --board-name=STRING

-n STRING, —--nic=STRING Network interface name to set. Default is
ethO
-y STRING, --yamlfilename=STRING Path to yaml config file. Default:
/etc/default/nebula
Usage: nebula [--core-opts] uart.set-local-nic-ip-from-usbdev [--options] [other
—tasks here ...]
Docstring:

Set IP of virtual NIC created from DUT based on found MAC

Options:

-a STRING, --address=STRING UART device address (/dev/ttyACMO). If a
yvaml config exist it will override, if no
vaml file exists and no address provided
auto is used

-b STRING, --board-name=STRING

-y STRING, --yamlfilename=STRING Path to yaml config file. Default:
/etc/default/nebula

Usage: nebula [--core-opts] uart.set-static-ip [--options] [other tasks here ...]

Docstring:
Set Static IP address of board of DUT from UART connection

Options:

-a STRING, --address=STRING UART device address (/dev/ttyACMO). If a
yaml config exist it will override, if no
vaml file exists and no address provided
auto is used

(continues on next page)

2.3. UART 9

nebula, Release 0.0.1

(continued from previous page)

-b STRING, —--board—-name=STRING
-1 STRING, --ip=STRING IP Address to set NIC to
-n STRING, —--nic=STRING Network interface name to set. Default is
ethO
-y STRING, --yamlfilename=STRING Path to yaml config file. Default:
/etc/default/nebula
Usage: nebula [--core-opts] uart.update-boot-files [--options] [other tasks here ...]
Docstring:

Update boot files through u-boot menu (Assuming board is running)

Options:

—a STRING, —--address=STRING UART device address
(/dev/ttyACMO) . If a yaml
config exist is will override,
if no yaml file exists and no
address provided auto is used

-b STRING, —--board—-name=STRING

—-d STRING, --devtreepath=STRING Path to devicetree.

-r, ——reboot Reboot board from linux console
to get to u-boot menu. Defaut
False

-s STRING, --system-top-bit-filename=STRING

-u STRING, --uimagepath=STRING Path to kernel image.

-y STRING, --yamlfilename=STRING Path to yaml config file.

Default: /etc/default/nebula

2.4 NETWORK

Usage: nebula [--core-opts] net.check-dmesg [--options] [other tasks here ...]

Docstring:
Download and parse remote board's dmesg log
Three log files will be produced:
dmesg.log — Full dmesg
dmesg_err.log - dmesg errors only
dmesg_warn.log - dmesg warnings only

Options:

-b STRING, —--board—-name=STRING

-1 STRING, --ip=STRING IP address of board

-p STRING, —-password=STRING Password for board. Default: analog

-u STRING, —--user=STRING Board username. Default: root
Usage: nebula [--core-opts] net.restart-board [--options] [other tasks here ...]
Docstring:

Reboot development system over IP

(continues on next page)

10 Chapter 2. Command-Line

nebula, Release 0.0.1

(continued from previous page)

Options:

-b STRING, —--board-name=STRING

-1 STRING, --ip=STRING IP address of board

-p STRING, —--password=STRING Password for board. Default: analog

-u STRING, —--user=STRING Board username. Default: root
Usage: nebula [--core-opts] net.update-boot-files [--options] [other tasks here ...]
Docstring:

Update boot files on SD Card over SSH

Options:
-b STRING, --bootbinpath=STRING
—-d STRING, --devtreepath=STRING
—-i STRING, --ip=STRING
-m STRING, --uimagepath=STRING
-0 STRING, —--board-name=STRING
-p STRING, —--password=STRING
-u STRING, —--user=STRING

Path to BOOT.BIN. Optional

Path to devicetree. Optional

IP address of board. Default from yaml
Path to kernel image. Optional

Password for board. Default:
Board username. Default: root

analog

2.5 DOWNLOADER

Usage: nebula [—-—-core-opts]

Docstring:

dl.bootfiles

[-—options] [other tasks here ...]

Download bootfiles for a specific development system

Options:
—a STRING, —--board-name=STRING
-b STRING, —--branch=STRING
—<hdlbranch>].

—<bootpartitionbranch>].

—»sources.
-f, ——-firmware
-0 STRING, —--source-root=STRING
—ssource.

—domain name (no http://)
-s STRING, —--source=STRING
-y STRING, --yamlfilename=STRING

Name of branches to get related files. It can
be from Linux+HDL folders or from the

boot partition folder.

For Linx+HDL, enterstring [<linuxbranch>,

For boot partition, enter [boot_partition,

This is only used for http and artifactory,,

Default is [boot_partition, master]

No arguments required. If set Pluto
firmware is downloaded from GitHub. Branch
name is used as release name. Design name
must be pluto or m2k

Location of source boot files. Dependent on_

For http and artifactory sources this is a IP or

Boot file download source. Options are:

local_fs, http, artifactory, remote.
Default: local_fs
Path to yaml config file. Default:

(continues on next page)

2.5. DOWNLOADER

11

nebula, Release 0.0.1

(continued from previous page)

/etc/default/nebula

Usage: nebula [--core-opts] dl.sdcard [--options] [other tasks here ...]

Docstring:
Download, verify, and decompress SD card image

Options:
-r STRING, —--release=STRING Name of release to download. Default is 2019_RI1

2.6 PDU

Usage: nebula [--core-opts] pdu.power-cycle [--options] [other tasks here ...]

Docstring:
Reboot board with PDU

Options:
—a STRING, --password=STRING Password of PDU service (optional)
-b STRING, —--board-name=STRING
—-d STRING, —--pduip=STRING IP address of PDU (optional)
-0 STRING, --outlet=STRING Outlet index of which dev board is
connected
-p STRING, --pdutype=STRING Type of PDU used. Current options:
cyberpower, vesync
-u STRING, --username=STRING Username of PDU service (optional)
-y STRING, --yamlfilename=STRING Path to yaml config file. Default:
/etc/default/nebula
2.7 JTAG
Usage: nebula [--core-opts] jtag.reboot [--options] [other tasks here ...]
Docstring:
Reboot board using JTAG
Options:
-b STRING, --board_name=STRING
—c¢ STRING, --custom-vivado-path=STRING Full path to vivado settings64 file.
When set ignores vivado version
-v STRING, --vivado-version=STRING Set vivado version. Defauts to 2019.1
-y STRING, --yamlfilename=STRING Path to yaml config file. Default:
/etc/default/nebula

12 Chapter 2. Command-Line

nebula, Release 0.0.1

2.8 INFO

Usage: nebula [--core-opts] info.supported-boards [--options] [other tasks here
Docstring:

Print out list of supported design names

Options:
—-f STRING, —--filter=STRING Required substring in design names

-]

2.9 DRIVER

Usage: nebula [--core-opts] driver.check-iio-devices [--options] [other tasks here

<]

Docstring:
Verify all IIO drivers appear on system as expected.
Exception is raised otherwise

Options:
-b STRING, --board-name=STRING
-i STRING, --iio-device-names=STRING List of IIO driver names to check on board
-u STRING, --uri=STRING URI of board running iiod with drivers
to check
-y STRING, --yamlfilename=STRING Path to yaml config file. Default:
/etc/default/nebula

2.8. INFO

13

nebula, Release 0.0.1

14 Chapter 2. Command-Line

CHAPTER 3

pytest

Using nebula through a fixture

import nebula

@pytest.fixture (scope="session", autouse=True)
def load_boot_file(request):
Before test

Bring up board

print ("Board bring up")

cfg = request.config.getoption("--configfilename")
m = nebula.manager (configfilename=cfqg)
m.start_tests ()

iddasdiasdaaddaddaaddadddii
yield
#HAAAFAAAFHAAFAAAFFAAFHAA A

After test
print ("Board bring down")

Put board into good state
m.stop_tests ()

15

nebula, Release 0.0.1

16 Chapter 3. pytest

CHAPTER 4

Configuration

Main configuration is done through a main YAML file. If sections are not filled out they will be not set at run-time
unless set on the command-line. Not setting certain parameters may limit functionality since some interfaces are
required in certain board failure modes. Below is a complete example with documentation for each setting.

Main external resources
system—-config:
- tftpserverip: 192.168.10.1 # TFTP server IP address
- tftpserverroot: /tftpboot # Directory of TFTP share on server
Local hardware settings
board-config:
— board—name: zyng-zc706-adv7511-fmcdaqg2
- monitoring-interface: uart # Console monitoring type. Options: uart, netconsole
- allow-jtag: False
Downloader Settings
downloader—-config:
- reference_boot_folder: zyng-zc706-adv751ll-fmcdag2 # Location of bootfiles
— hdl_folder: dag2_zc706
Driver Settings
driver-config:
— iio_device_names:
- ad7291
- ad9523-1
- axi-ad9680-hpc
- axi-ad9l44-hpc
UART settings
uart-config:
- address: /dev/ttyUSBO # File descriptor for UART console (auto will try to find,
—but linux only)
— baudrate: 115200 # UART baudrate in bits per second
- logfilename: zc706-dag2.log # Filename for logging output of console
Network/Ethernet settings
network-config:
- dutip: 192.168.10.2 # IP address of development board
Power distribution unit settings

(continues on next page)

17

nebula, Release 0.0.1

(continued from previous page)

pdu-config:
— pduip: 192.168.86.35 # IP address of power distribution unit
- outlet: 1 # Outlet number of development board
- pdu_type: cyberpower # PDU device type. Options: cyberpower, vesync

Each section of the yaml file applies to specific classes of nebula, and follow the convention <classname>-config,
except for system. Therefore, you can modify any class property during initialization through the yaml file. For
example if you wanted to change the bootargs setting, which is the kernel bootargs set over UART, you would have
the following in your yaml:

uart-config:
- bootargs: console=ttyPS0,115200 root=/dev/mmcblk0p2 rw earlycon rootfstype=ext4
—rootwait

If settings exist in the yaml file within a -config block that does not has an existing property, this will cause an
exception. This is designed to avoid defining settings which do not change behavior.

4.1 Generation

If you use the CLI interface through the nebula gen-config command to interactively generate this yaml file.

18 Chapter 4. Configuration

CHAPTER B

Built-In Tests

Core tests are provided for basic validation of a given platform. Currently these are focused around libIIO, JESD, and
some basic OS level checks.

5.1 Driver Tests

5.2 Operating System Tests

19

nebula, Release 0.0.1

20

Chapter 5. Built-In Tests

CHAPTER O

Examples

6.1 Kernel Coverage Testing

This example will explain how gcov can be used to get coverage traces of specific drivers.

6.1.1 Building the kernel

The kernel must be built with certain configurations and enabled and certain Makefiles updated so the specific driver
is selected for coverage monitoring. For complete doc look at the kernel.org doc .

In short, configure the kernel with:

CONFIG_DEBUG_FS=y
CONFIG_GCOV_KERNEL=y

select the gcc’s gcov format, default is autodetect based on gcc version:

’ CONFIG_GCOV_FORMAT_AUTODETECT=y

To select specific drivers or folders update the necessary Makefiles as:

* For a single file (e.g. main.o):

’GCOV_PROFILE_main.O =y

* For all files in one directory:

’GCOV_PROFILE =y

To exclude files from being profiled even when CONFIG_GCOV_PROFILE_ALL is specified, use:

’GCOV_PROFILE_main.o = n

and:

21

https://www.kernel.org/doc/html/v4.14/dev-tools/gcov.html

nebula, Release 0.0.1

GCOV_PROFILE := n

Only files which are linked to the main kernel image or are compiled as kernel modules are supported by this mecha-
nism.

6.1.2 Collecting logs and generating HTML reports

Once the remote kernel is booted and tests have been run. To collect the gcov traces and to generate the HTML report
use the CLI API:

nebula coverage.kernel --ip <ip of DUT> --linux_build_dir <Build directory of kernel>

This will create a directory called html with the generated html report.

Note: For the reports to be generated correctly the necessary compiler must be on path which was used to build the
kernel and Icov must be installed.

22 Chapter 6. Examples

CHAPTER /

Indices and tables

* genindex
* modindex

e search

23

	Managers
	Using Managers
	Boot Flow

	Command-Line
	Top-Level
	MANAGER
	UART
	NETWORK
	DOWNLOADER
	PDU
	JTAG
	INFO
	DRIVER

	pytest
	Configuration
	Generation

	Built-In Tests
	Driver Tests
	Operating System Tests

	Examples
	Kernel Coverage Testing

	Indices and tables

